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Context

To increase the competitivity of alfalfa as feedstock for
ethanol production, there is a need for the development
of new genetic resources with:

< Highly degradable cell walls (high content in
fermentable carbohydrates)

< High biomass yield under harsh winter conditions
specific to Canada



Harvest fractionation of alfalfa 3
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< High cellulose content ‘
(ethanol) ‘

» High biomass yield (45%)
- High protein content (30%)

» Co-products (flavonoids,
biopharming)
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Approach

Field pre-selection of genotypes with high biomass
yield and persistance (Biomass-type and Winterhardy-
type) — (3000 genotypes seeded — 600 selected)

Assessment of genetic variability for parameters linked
with production of cellulosic ethanol :

a)  Non structural carbohydrate content (NSC)

b)  Structural carbohydrate content (SC, cell
walls)

c) Cell wall degradability (enzymatic
saccharification)

Intercross selected genotypes

Search for molecular markers




Non-structural sugars in lignified stems
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< Differs according to cultivars
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> Easily extracted and stable source of readily fermentable sugars
> Large genetic variability for NSC content (1 to 10% of lignified




Structural sugars in lignified stems

Alfalfa stem composition
at 25% flowering

Component Sugars mg/g CW

Cellulose Glucose 436
Hemicellulose Xylose 129
Mannose 27
Fucose 2
Pectin Uronic acids 134
Arabinose 27
Galactose 27
Lignin 205

Jung et Lamb (2003)

Enzymatic cocktail for alfalfa
stem degradation

< Accellerase 1500 (Genencor)

Cellulase and B-glucosidase activity
< Xylanase and cellulase additive (XC)
< Xylanase additive (XY)

< Pectinex 3XL (Sigma)
Pectinase, cellulase et hemicellulase



Enzymatic saccharification efficiency

Winterhardy-type Biomass-type
Vegetative
700 700
— H Acidic =
g 600 ash) g 600 59%
c M Enzymatic (48 b °
% 500 Y 82% % 500
a8 a0
£ 400 y £ 400
92%
2 2
B 300 5 300 +
£ 200 - T 200 -
g 100 4 45% 43% 80% 93% § 100 | 70% 75%
0 - 0 -
Glucose | Xylose |Mannose Arabinose/Galactose Glucose Mannose Arabinose Galactose
Cellulose Hemicelluloe Lignin Cellulose Hemicelluloe Lignin
20% flowering
700 33% 700 28%
% 600 g 600
- 39% -
w 500 w500
o o 35%
E 400 | E 400 |
s s
= 300 - = 300 4
o J
£ 200 £ 200
g 7% g 100 8% 26% 37%
§ 100 31%  77%  55% S I 18%
0 - 0 -
Glucose | Xylose |Mannose Arabinose|/Galactose Glucose | Xylose |Mannose/Arabinose Galactose
Cellulose Hemicelluloe Pectin SC Lignin Cellulose Hemicelluloe Pectin SC Lignin

Test discriminates between stems with high (D+) and low (D-) degradability



Near-infrared reflectance spectroscopy

% Prediction of physicochemical parameters| <R
¢ Minimal sample preparation
¢ High throughput screening

¢+ Accurately predicts carbohydrate fractions in alfalfa
and ethanol yield in switchgrass




NIRS - Predictions

Parameter
A- Enzymatic-released glucose 0,94
B- Enzymatic structural carbohydrates 0,86
C- Lignin 0,64
D- Soluble sugars 0,97
E- Starch 0,78
F- Non-structural carbohydrate (D + E) 0,97
G- Fermentable carbohydrates (B + F) 0,85

< Enzyme-released glucose is accurately predicted in alfalfa by
NIRS (R? =0.94)

Duceppe et al. 2012 Bioenerg. Res. Online May 2012



Enzyme-released glucose in four genetic backgrounds
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Orca 54V54 Amerigraze Perfect

+» Within each cultivars, E-R glucose varied extensively
* On average, degradability of winterhardy-type cultivars (54V54,
Amerigraze, Perfect) is higher than for the biomass-type cultivar Orca



Relationship between lignin and E-R glucose
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< Strong negative correlation (R =-0.83) between lignin
concentration and E-R glucose

< Large genetic variability for lignin content



Enzyme-released glucose (NIRS)
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Rapidly characterize CW degradability of hundreds of genotypes

Selection of 20 D+ and D- genotypes by NIRS prediction




Validation of NIRS prediction
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Enzymatic-released glucose is genetically inherited
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Conclusions

“»* NIRS efficiently predict alfalfa stem composition and degradability -
High throughput screening.

s+ Genotypes with high (D+) and low (D-) CW degradability were
identified in two genetic backgrounds.

» D+ genotypes had on average 20% less lignin than D- genotypes
and were 35% more degradable.

»» CW degradability was significantly higher in progenies from
crosses of D+ genotypes showing heritability of that trait.

s Assessment of DNA polymorphism suggests the presence of
genomic region that affect CW degradability .



Current activities

+» Continue recurrent selection for CW degradability and
increased NSC content in lignified stems.

+* ldentify DNA polymorphisms to develop molecular marker
applications.

Physical pre-treatment,
chemicals and enzymes

Fuel-producing
microorganisms

Solar energy W i
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